

5 August 2018, Furama Resort Da Nang, Vietnam

Dinesh Khokal, PhD, Singapore

 Director, External Affairs, Corporate Quality, JAPAC and Intercontinental – LatAm, Amgen Singapore

GaBl Educational Workshops

5 August 2018, Furama Resort Da Nang, Vietnam

1st ASEAN Overview Workshop on GMP for BIOLOGICALS/BIOSIMILARS

Fermentation: fundamentals, control of source materials and cell culture conditions

Dinesh Khokal, PhD

5 August 2018

FERMENTATION: FUNDAMENTALS, CONTROL OF SOURCE MATERIALS AND CELL CULTURE CONDITIONS

First ASEAN Overview Workshop on GMP for Biologicals/Biosimilars Generics and Biosimilars Initiative (GaBI) 5 August 2018, Da Nang, Vietnam

DINESH KHOKAL, PH.D. DIRECTOR, EXTERNAL AFFAIRS, JAPAC & LATAM

- Introduction
- Fundamentals of fermentation
- Control of source materials
- Control of cell culture conditions

BIOLOGICS MANUFACTURING FLOWCHART UPSTREAM AND DOWNSTREAM BIOPROCESS

Pioneering science delivers vital medicines[™]

UPSTREAM BIOPROCESS

Courtesy: Eli Kraus, Amgen

DOWNSTREAM BIOPROCESS

FERMENTATION VS CELL CUTLTURE?

Fermentation:

Microbes obtain energy by breaking down glucose and other molecules

Cell Culture:

Cells taken from living organisms and grown under controlled conditions in a laboratory or manufacturing system

Fermentation and cell culture are essentially the same thing

COMMONLY USED ORGANISMS

- Bacteria
 - Escherichia coli (E. coli)
 - Bacillus subtilus
- Yeast
 - Pichia pastoris
 - Saccharomyces cervisiae,
 - Schizosaccromyces pompe
- Mammalian Cell
 - Chinese hamster ovary (CHO) cells
 - African green monkey kidney cells
 - Baby hamster kidney (BHK) cells
 - NSO murine myeloma cells
 - PER.C6 Human cells
- Insect cells: Sf9, Sf21

Introduction

- Fundamentals of fermentation
- Controls of source materials
- Control of cell culture conditions

DIFFERENT TYPES OF FERMENTATION TECHNIQUES

Batch Culture

- closed system
- Grown to a maximum density & harvested as a batch
- After the start, nothing is added except aeration
- Volume of culture remains same
- Concentration of nutrition decreases continuously
- Toxic metabolites accumulate
- Characteristics growth curve lag, log phase, stationary and decline phases

Advantage Chance of contamination of culture is minimum Disadvantage Low product yield and not economic

DIFFERENT TYPES OF FERMENTATION TECHNIQUES

Fed-batch culture

- Semi-closed system
- During incubation a particular nutrient is added at intervals
- No removal the used up media
- Volume of culture increases continuously
- Nutrients inhibiting growth at high concentration are kept in lower concentration initially, added slowly and continuously during the course of fermentation.

Advantage Greater product yields Disadvantage Chance of contamination of culture is higher

DIFFERENT TYPES OF FERMENTATION TECHNIQUES

Continuous culture

- Open system
- Fresh sterile medium is added continuously
- Used up media is removed continuously
- The volume and bacterial density remain same in the cultivation vessel
- Bacteria grow in their log phase steady state growth
- Cell density remains constant
- Achieved by maintaining constant dilution and flow rate.
- Secreted protein products continuously harvested by filtration

Advantage greater product yields

Disadvantage Chance of contamination of culture is higher

CELL CULTURING TECHNIQUES

Two kinds of systems for animal cell culture

- Substrate or Anchored systems
 - cells attached to the surface of the culture vessel or other solid support
- Suspension Systems
 - Cells suspended in a liquid medium

MEDIUM FOR GROWTH

Cells	 Deteriorate and die when getting too few nutrients
Nutrients	 Provided in the form of a medium
Bovine serum	Has long been preferred in mammalian cell culture
Serum-free and Protein-free media	 Reduces cost and increases safety
Media formulation	 Ensures consistency in production and performance of large lots

FERMENTORS AND BIOREACTORS

Parameters	Purpose
Mechanical equipment	Designed for cultivation of cells
Fomenters	To cultivate microbes
Bioreactors	To cultivate animal cells
Thermodynamics	Solubility of oxygen in the medium
Microkinetics	Cell growth, product formation and, transport of materials to and from cells
Optimal mixing	To ensures effective oxygen transfer, heat transfer and dispersal of materials.
Minor deficiencies in media	Have major effects on cell growth and protein production
Stirring the medium	Prevents cells from settling to the bottom; Ensures homogenous environment and improves oxygen transfer
Mechanism to maintain circulation	Motor-driven shaft impeller, can cause shear-force damage to cells.
Shear effects in bioreactors	Depends on the type of cells used
Larger bioreactors	Providing adequate oxygen is hampered by cell fragility
Animal cells	More fragile than microorganisms because of their large size and lack of rigid cell wall
Transport of nutrients	Governed by flow and diffusion; directly related to shear, mixing, mass transfer, heat transfer and macrokinetics
Scale-up problems	Arise due to imbalance of heat, mass, or momentum in a system. All these factors affect product yield.

PROCESS CONTROL AND AUTOMATION

- Cell growth depends on physiochemical environment.
- Must control:
 - pH, DO₂, pressure sparging, temperature,
 - foaming and concentration of nutrients
 - waste products
- Sterile probe devices used for process monitoring and control
- Process sensors are calibrated regularly
- Sophisticated monitoring and control software are used
- Cell growth is monitored
 - Sampling, Cell density, Viability
- Product concentration HPLC and ELISA

APPROXIMATE TIMEFRAME FROM INTRODUCED GENE TO PROTEIN PRODUCTION AT USABLE LEVELS

Microbes & Cells

Transgenic Plants & Animals

AMCEN[°] Pioneering science delivers vital medicines[™]

BIOLOGICAL CONTAMINANTS

Contamination of cell cultures is the most common problem

Chemical contaminants

impurities - source materials

Biological contaminants

- Bacteria
- Moulds and yeasts
- Viruses
- Mycoplasma
- Cross contamination

by other cell lines

Impossible to eliminate contamination entirely

Possible to reduce its frequency and seriousness

- Understand source of contamination
- Following good aseptic technique

ASEPTIC PROCESSING

cGMPs	Controlling bioburden and sterility
Low bioburden, Sterility	 Don't have sterility, Low bioburden, don't have a culture
Batch and fed-batch process	Allow downtime for taking out parts for cleaningThorough cleaning of the equipment
Cleaned in place (CIP)	 Cleaning using chemicals and steam
Steam in place or sterilize-in-place (SIP)	Cleaning and Sterilizing using clean steam
Material of Choice	High-grade stainless steel (Grade 316L)
Use of Disposables	Piping, fittings, plastic bagsSingle-use bioreactors

ASEPTIC PROCESSING

- Use of other equipment to provide
 - ultrapure oxygen
 - carbon dioxide
 - Air
 - water-for-injection (WFI) and
 - various ingredients for the fermentation medium
- Pumps move fluid
- Filters guard against impurities
- Inlet gas is sterile filtered
- Exhaust gas goes through condensers and sterilizing filters
- Valves direct fluid and gases
- Culture medium is filtered
- Serum many irradiated or heat inactivated

PERSONNEL TRAINING AND MONITORING

- Minimize personal intervention
 - -well-designed facility
 - -well maintained
 - -well operated aseptic processes
- As operator activities increase, risk to finished product sterility also increases
- Critical for operators involved in aseptic activities to use aseptic technique at all times.
- Appropriate training is critical

PERSONNEL TRAINING & MONITORING

- Fundamental training topics
 - aseptic technique
 - cleanroom behaviour
 - microbiology
 - Hygiene
 - Gowning
 - patient safety hazards
 - aseptic manufacturing operations
- Ongoing training program
- Supervision on conformance to aseptic operations
- Quality control oversight

PERSONNEL TRAINING AND MONITORING

Techniques aimed at maintaining sterility

- Contact sterile materials only with sterile instruments
- Move slowly and deliberately
- Keep the entire body out of the path of unidirectional airflow
- Maintain Proper Gown Control

Laboratory Personnel

- Basic training in aseptic technique
- personnel qualification in aseptic manufacturing processes and systems

MONITORING PROGRAM

- Personnel can significantly affect the environment
- Vigilant and responsive personnel monitoring program
- Monitoring surface samples of each operator's gloves
 - daily basis
 - in association with each lot
- Appropriate sampling frequency from strategically selected locations of the gown.
- Comprehensive monitoring program for operators by QC

Introduction

- Fundamentals of fermentation
- Control of source materials
- Control of cell culture conditions

AMGEN[®] Pioneering science delivers vital medicines[™]

CONTROL OF SOURCE MATERIALS – IMPORTANCE?

- Controlling the quality of source materials challenging and critical task
- Risk of adventitious agent contamination
- Risk of other serious quality deviation
- Potential to disrupt manufacturing process

Potential to impact product:

- Quality/ safety/Efficacy
- Lot-to-lot consistency
- Specification failure
- Comparability
- PK/PD
- Adventitious agents
- Chemical contaminants
- Immunogenicity

- Qualify suppliers
- Manage source materials quality
 - identification
 - meeting appropriate standard
 - intended use
 - variability
 - clearance and control of adventitious agents of biologicallysourced materials
- Define and control the source, origin and suitability according to GMP principles
- Retain information on the source and quality of the biological materials
- Sampling, testing and monitoring program
- Qualify alternative source

Biologic reagents

- bovine serum albumin
- transferrin
- insulin
- growth factors
- TSE Risk Evaluated Certificate of Suitability (CEP)

Source materials derived from cell lines

- Origin, Source and History of Host Cell Line
- Passage number or the number of generation during cell growth history and characterization
- Information on genetic modification for the cell line, cloning vectors, plasmid maps and construction of the intermediate cloning vectors
- Procedures on cell transfection, screening and sub-cloning should be provided.

Cell lines

- Source, history, and generation of cell line
- Analysis of expression construct used to genetically modify cells
- Cell banking system, characterisation and testing:
 - Genetic, phenotypic & immunological markers of the cell
 - Cell viability, genetic, phenotypic stability

Specifications on MCB and WCB include tests

- Sterility
- mycoplasma
- virus associated with the cell line
- other adventitious viruses

Water

meet appropriate quality standard for PW and WFI

Introduction

- Fundamentals of fermentation
- Control of source materials

Control of cell culture conditions

Cell culture operating parameters affect process performance and product quality.

Courtesy: Feng Li et.al., mAbs 2:5, 2010

- Operating parameter optimization
 - to achieve high expression of product
 - acceptable product quality profiles

Parameters

- Physical
- Chemical
- Biological

Physical parameters

- Temperature, gas flow rate, agitation speed

Chemical parameters

- dissolved O₂
- CO₂, pH, osmolality, redox potential, metabolite levels, substrate, amino acids and waste by-products

Biological parameters

- cell concentration
- viability
- intracellular and extra-cellular measurements such as NADH, LDH levels, mitochondrial activity and cell cycle analysis

- Variations parameters from optimal levels can impact
 - culture performance
 - Productivity
 - product quality
- A typical stirred tank bioreactor is equipped with temperature, pressure, agitation, pH and dissolved oxygen controls
- Operating strategies and parameters effect
 - dissolved oxygen (DO) and CO₂
 - pH
 - Osmolality
 - mixing,
 - hydrodynamic shear

Influences measures of process performances

cell growth, metabolite concentrations, product titer and product quality

Thoroughly characterize and optimize bioreactor operating parameters \rightarrow To improve process performance

→ To better understand how the process affects product quality → Cell culture process affects product quality and potency, especially wrt. glycosylation, post-transcriptional modifications and impurity profiles

 \rightarrow due to complexity of protein products - isoforms and micro-heterogeneities

MANUFACTURING OCCURS UNDER CGMP TO ENSURE PRODUCT QUALITY AND SAFETY

cGMP Interrelationship Web

CONCLUSION

Fermentation processes, sterile practices, control of bioburden, control of source materials and control of cell culture conditions should be:

- ≻risk-based
- ≻science-based

in accordance to WHO good manufacturing practices for biological products

THANK YOU FOR YOUR ATTENTION

