First ASEAN Educational Workshop on Regulation and Approval of **Biosimilars/Similar Biotherapeutic Products**

23 July 2017, Amari Watergate, Bangkok, Thailand

Professor Kearkiat Praditpornsilpa, MD, Thailand

- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Chair of Working Group Biological Products,
 National List of Essential Medicines Thailand

First ASEAN Educational Workshop on Regulation and Approval of **Biosimilars/Similar Biotherapeutic Products**

23 July 2017, Amari Watergate, Bangkok, Thailand

Clinician's experience of biocopy EPO in Thailand

Professor Kearkiat Praditpornsilpa, MD 23 July 2017

Clinician's Experience of Biocopy EPO in Thailand

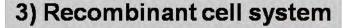
Kearkiat Praditpornsilpa MD

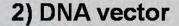
Division of Nephrology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand

Biotherapeutic/Biopharmaceutical Agents/Biologics

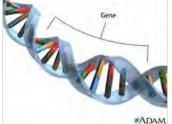
- Biosimilars
- Follow-on biologics
- Subsequence entry biologics
- Intended copy product

Innovator Products

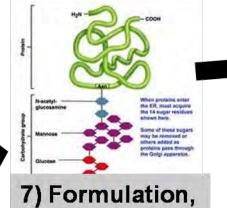

Highly regulated market VS

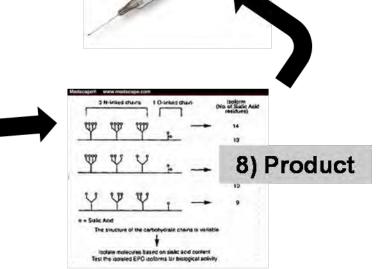

Less regulated market or Non-regulated market

Biocopy Products

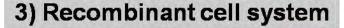

Complexity of Biotherapeutic Products Manufacturing

1) Genetic sequence


4) Fermentation condition

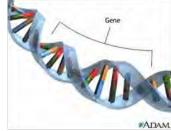

5) Purification protocol

6) Therapeutic protein product



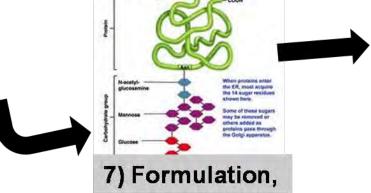
Package,

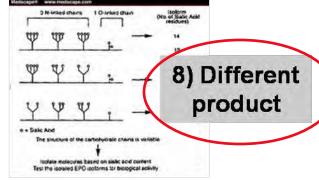
preservation


Complexity of Biotherapeutic Products Manufacturing

1) Genetic sequence

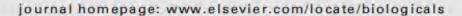
Biosimilar Product


or


Package, preservation

Intended Copied Product

6) Therapeutic protein product



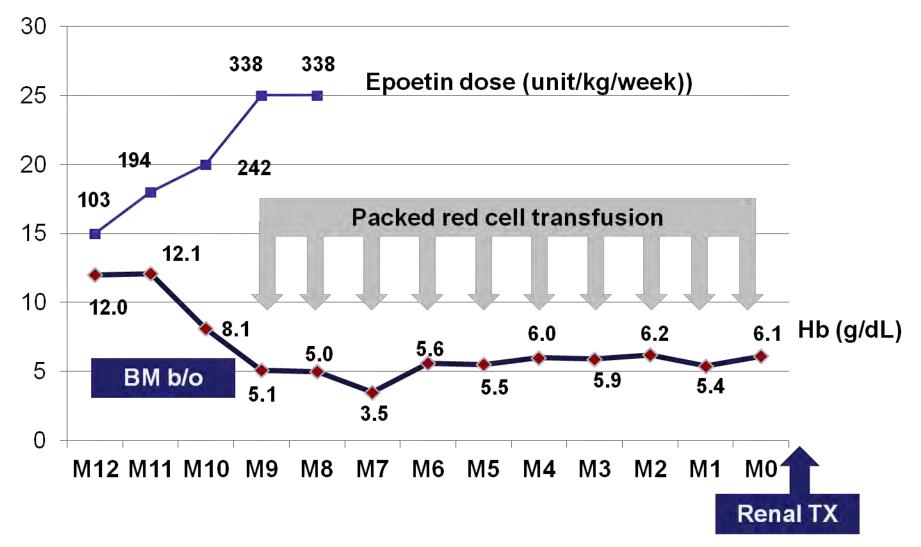
Contents lists available at ScienceDirect

Biologicals

Towards regulation of similar biotherapeutic products: Thailand's perspective Prapassorn Thanaphollert a.*, Kriang Tungsanga b

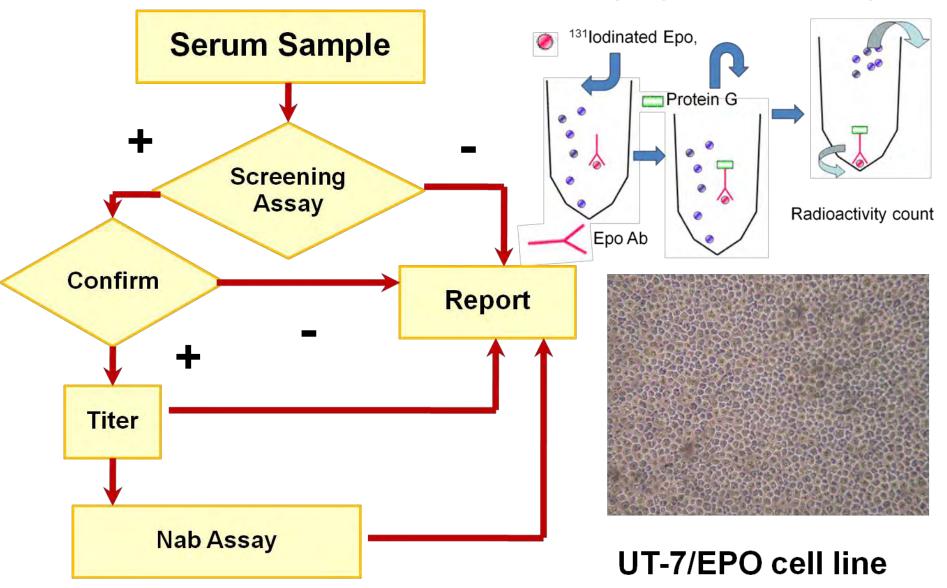
ABSTRACT

Keyword: SBP in Thailand The implementation of universal health coverage scheme in Thailand allows quality, equitable and accessible health care for all. Patients with life threatening and chronic diseases can get access to biotherapeutic products to treat their ailments. This triggered a major impact on the need for specific guidelines in evaluation of similar biotherapeutic products in order to standardize the regulatory pathway to license this class of products ensuring that the products meet acceptable levels of quality, safety and efficacy. The development of similar biotherapeutic products (SBP) should be considered to ensure therapeutic equivalence of biotherapeutics products at more affordable prices. This will lead to greater ease and speed of approval and assurance of the quality, safety and efficacy of these products. Therefore, we report herein the SBP situation in Thailand.


World Health Organization 2011. All rights reserved. The World Health Organization has granted the Publisher permission for the reproduction of this article.

^{*}Bureau of Drug Control, Thai Food and Drug Administration, Ministry of Public Health, Nonthaburi 10110, Thailand

b Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand


Recovery from anti-Epo associated PRCA after renal Tx

Tier Approach to Neutralizing Ab

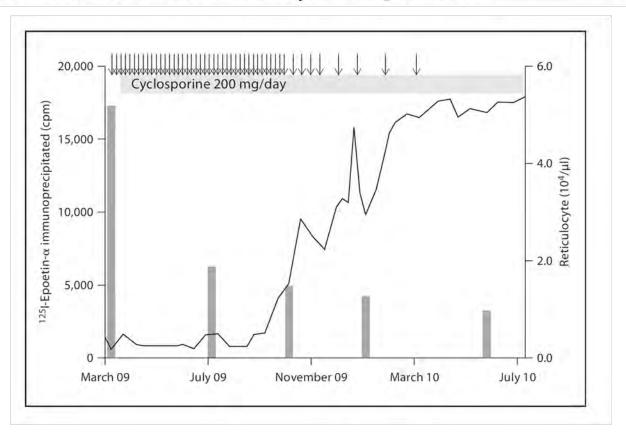
Immunoprecipitation Test for Anti-Epo

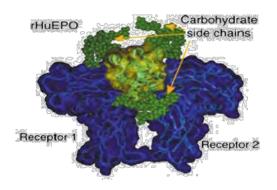
Subcutaneous Injection of Epo and Risk of Anti-r-HuEpo

Clinical criteria

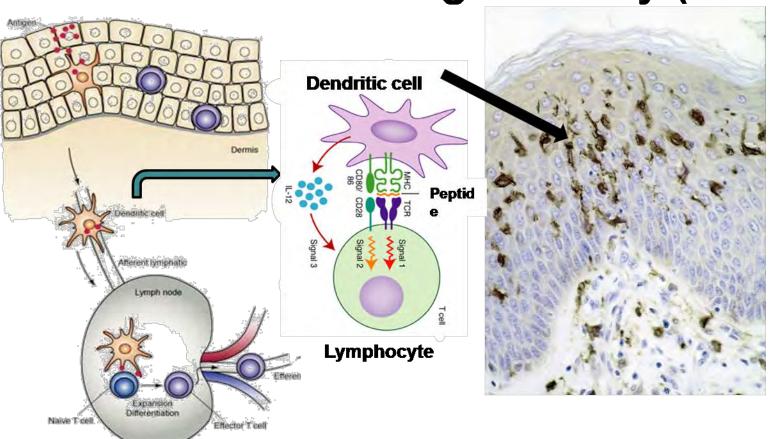
- Treatment with recombinant Epo for average of 9-12 months
- Loss of efficacy defined by drop of Hb 1 g/L/day or need blood Tx 1 u/week
- Reticulocutopenia (less than 10,000/μL)
- Normal white blood cell count/platelet count

Confirmation investigation

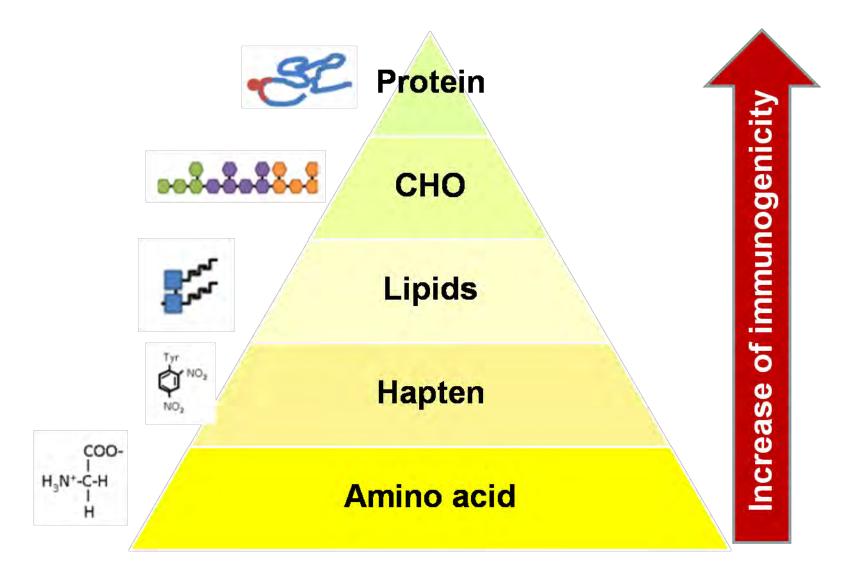

- Positive serum assay for anti-erythropoietin Ab
- Evidence of neutralizing Ab
- Normal cellularity bone marrow and < 5% erythroblast with maturation block

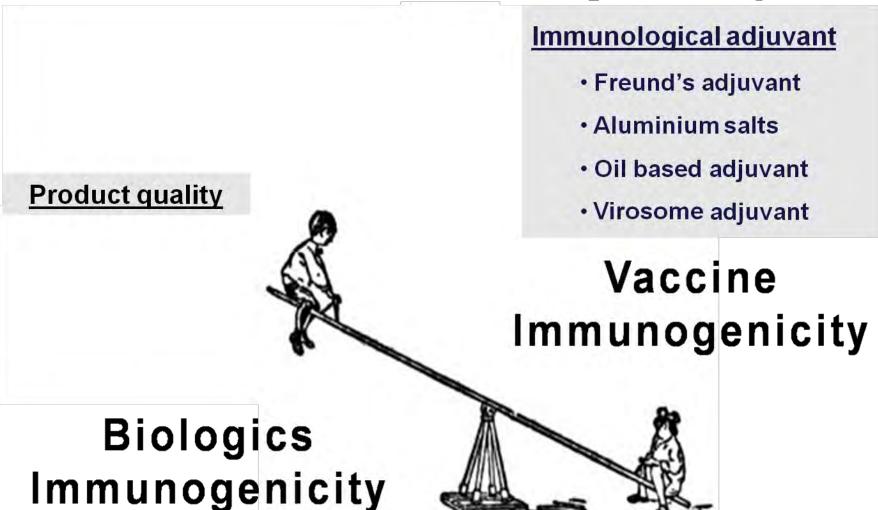


Case Report


Acta Haematol 2011;126:114–118 DOI: 10.1159/000328041 Received: January 31, 2011 Accepted after revision: March 22, 2011 Published online: June 7, 2011

Pure Red Cell Aplasia Induced Only by Intravenous Administration of Recombinant Human Erythropoietin




Immunogenicity of Biotherapeutic Products: Anti-Drug Antibody (ADA)

Immunogenicity

Balance of Immunogenicity

© 2011 International Society of Nephrology

Biosimilars need comparative clinical data

To the Editor: We have read with great interest the study by Praditpornsilpa et al.¹ in Kidney International about the association between antibody-associated pure red cell aplasia (PRCA) and the use of copies of epoetins alpha and beta, for which the marketing authorization was based on the generic regulatory approach used for small molecules, which does not

http://www.kidney-international.org

© 2011 International Society of Nephrology

see original article on page 88

Erythropoiesis-stimulating agents and pure red-cell aplasia: you can't fool Mother Nature

Jay B. Wish

Subtle alterations in the properties of biopharmaceutical agents may

original article

go the same quality nd distribution as their milar erythropoiesisl-cell aplasia in a model for other

Biosimilar recombinant human erythropoietin induces the production of neutralizing antibodies

Kearkiat Praditpornsilpa¹, Khajohn Tiranathanagul¹, Pawinee Kupatawintu², Saengsuree Jootar³, Tanin Intragumtornchai⁴, Kriang Tungsanga¹, Tanyarat Teerapornlertratt⁵, Dusit Lumlertkul⁶, Natavudh Townamchai¹, Paweena Susantitaphong¹, Pisut Katavetin¹, Talerngsak Kanjanabuch¹, Yingyos Avihingsanon¹ and Somchai Eiam-Ong¹

¹Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; ²National Blood Center, Thai Red Cross Society, Bangkok, Thailand; ³Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ⁴Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; ⁵Division of Nephrology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand and ⁶Division of Nephrology, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Biosimilar recombinant human erythropoietin induces the production of neutralizing antibodies

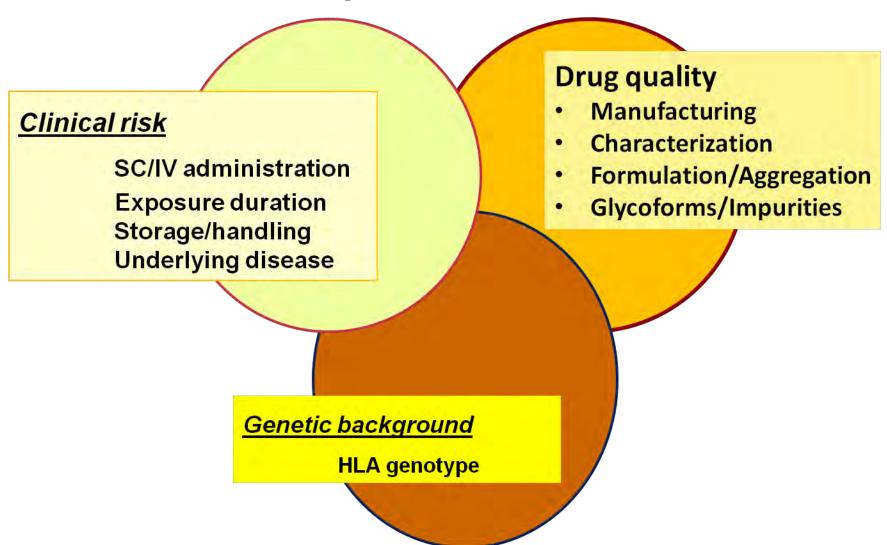
	Anti-r-HuEpo positive	Anti-r-HuEpo negative
Numbers of patients (cases)	23	7
Gender, male/female (case/case)	13/10	3/4
Age, years ± s.d.	61.1 ± 21.4	52.8 ± 4.8
CKD status, cases (%)		
Predialysis	8 (34.8)	2 (28.6)
Hemodialysis	14 (60.9)	4 (57.1)
Peritoneal dialysis	1 (4.3)	1 (14.3)
Etiology of CKD, cases (%)		
Diabetic nephropathy	5 (26.1)	3 (42.9)
Chronic glomerulonephritis	3 (13.0)	0
Unknown	14 (60.9)	4 (57.1)
r-HuEpo exposure duration, months \pm s.d. (range in months)	12.1 ± 7.8 (3-36)	22.3 ± 19.8 (6-60)
r-HuEpo dose, U/kg/week ± s.d.	149 ± 82	171 ± 91
Hb before LOE, $g/dl \pm s.d.$	10.8 ± 1.6	11.4 ± 0.7
Hemoglobin by the time of LOE, $g/dl \pm s.d.$	5.6 ± 0.9	7.3 ± 0.7
Reticulocytes, cell/mm $^3 \pm$ s.d.	5978 ± 1217	13,128 ± 3,456
Serum ferritin, ng/ml ± s.d.	368.6 ± 83.1	370.3 ± 93.7
Transferring saturation, $\% \pm s.d.$	28.3 ± 6.6	28.8 ± 5.2
Serum folate, pg/ml ± s.d.	12.8 ± 4.5	12.5 ± 4.3
Serum B_{12} , $pg/ml \pm s.d.$	258.2 ± 189.2	177.1 ± 84.4
CRP, $mg/l \pm s.d.$	4.22 ± 2.98	3.62 ± 3.56
iPTH, pg/ml ± s.d.	241.4 ± 127.1	284.0 ± 151.6

Table 2 | Total c.p.m. (%) by different sera dilution to detect anti-r-HuEpo-associated PRCA cases in patients using subcutaneous biosimilar r-HuEpo: antibody-positive and antibody-negative cases, negative control, and pure negative control

			Mean of	percent c.p.m. ± s.d		
	1:20 dilution	1:50 dilution	1:100 dilution	1:1000 dilution	1:10,000 dilution	1:20,000 dilution
Anti-r-HuEpo-positive cases (N=23)	18.2 ± 8.8	12.7 ± 9.7	10.5 ± 9.2	3.5 ± 5.0	1.0 ± 1.0	0.3 ± 0.8
Anti-r-HuEpo-negative cases (N=7)	0.2 ± 0.1	NA	NA	NA	NA	NA
Negative control (N=30)	0.2 ± 0.1	NA	NA	NA	NA	NA
Pure negative control (N=30)	0.2 ± 0.1	NA	NA	NA	NA	NA

Abbreviations: c.p.m., counts per minute; NA, not applicable; PRCA, pure red-cell aplasia; r-HuEpo, recombinant human erythropoietin.

Estimation of risk


Yearly prevalence of dialysis patients in 2008 receiving r-HuEpo was obtained from the Thai Renal Replacement Therapy Registry data. In 2008, there were a total of 26,511 chronic dialysis cases receiving r-HuEpo.⁸ The prevalence of CKD stage IV (predialysis) was obtained from a recent epidemiologic survey conducted in Thailand.⁹ From 63 million people, the prevalence of CKD stage IV was 0.2%. Out of this 0.2%, about 40% had Hb below 10 g/dl and needed r-HuEpo treatment. From the Thai ESA registry data, 78% of the patients had received biosimilar r-HuEpo.

Estimation of risk for anti-r-HuEpo-associated PRCA was calculated by $23/(26,511+(63,000,000\times0.002\times0.4))\times0.78=23/59,990$.

Thus, an estimation of the actual cases using biosimilar r-HuEpo denominator with this complication was 1:2608. This indicated that 1 out of 2608 patients using biosimilar r-HuEpo would develop PRCA.

Praditpornsilpa K et al. Kidney Int 2011; 80:88-92

What are the risk factors/pathogenesis of anti-r-HuEpo associated PRCA?

Original Article

The association of anti-r-HuEpo-associated pure red cell aplasia with HLA-DRB1*09-DQB1*0309

Table 1. Patients' characteristics of anti-r-HuEpo-associated PRCA cases

Numbers of patients (cases)	22
Age, years \pm SD (range)	$56.9 \pm 16.9 (17-82)$
Gender: male/female (case/case)	11/11
r-HuEpo exposure duration: months \pm SD (range)	$9.9 \pm 3.2 (7-17)$
r-HuEpo form at the time of diagnosis of PRCA	
Total alpha-r-HuEpo (cases)	19
Teflon-coated stopper pre-filled syringes	11
Uncoated stopper pre-filled syringes	7
Biosimilar alpha-r-HuEpo (cases)	1
Beta-r-HuEpo (cases)	3

r-HuEpo, recombinant human erythropoietin; PRCA, pure red cell aplasia.

HLA-A, -B, -DR haplotype frequencies in the Thai Stem Cell Donor Registry

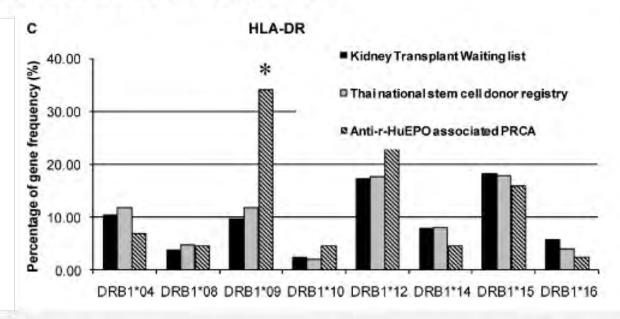
P. Kupatawintu¹, S. Pheancharoen¹, A. Srisuddee¹, H. Tanaka², K. Tadokoro² & O. Nathalang³

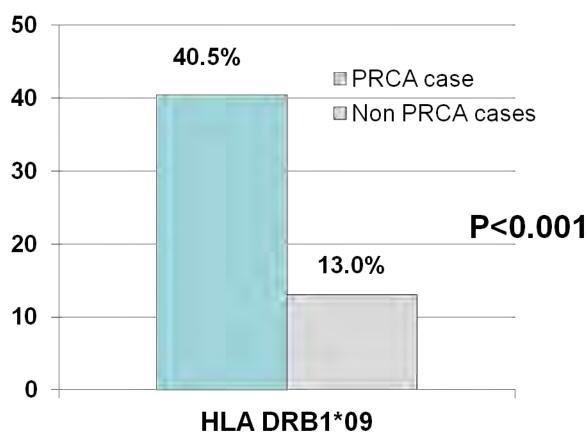
N = 16,807 Most common haplotypes: HLA-A33-B58-DR17 (4.54%)

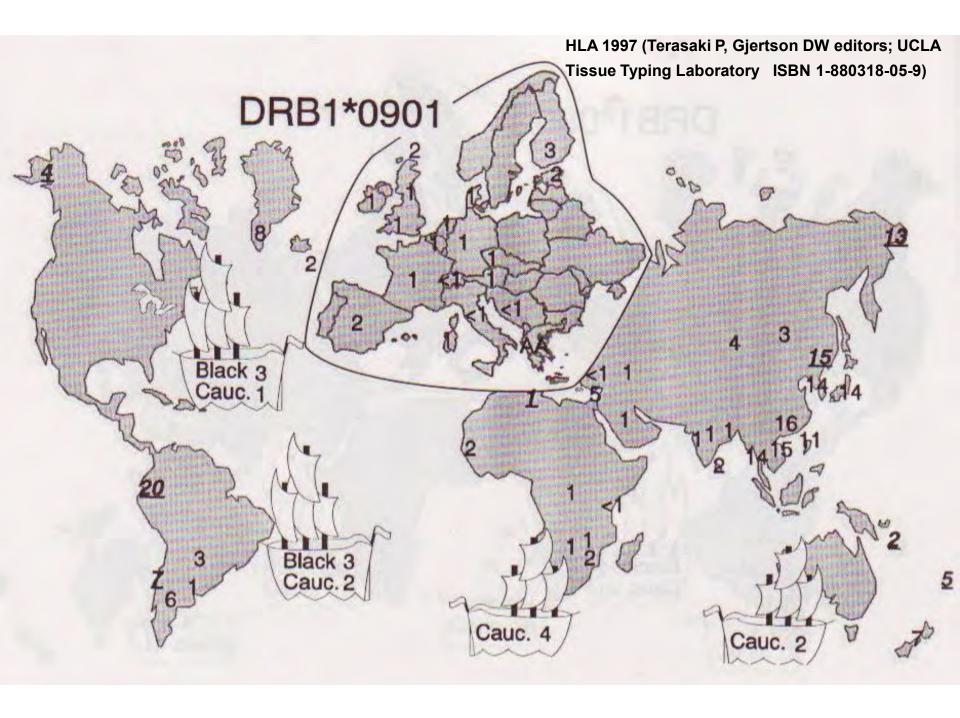
+ 5	HLA-A		HLA-B	1	HLA-DR
Antigen	Frequency (%)	Antigen	Frequency (%)	Antigen	Frequency (%)
33	13.80	13	7.90	15	17.50
2	29.24	35	4.50	12	16.90
11	27.70	44	4.50	9	11.50
24	17.34	18	3.90	4	11.40
1	2.20	27	3.30	7	8.20
30	2.00	13	7.90	14	7.60
26	1.90	18	3.90	17	6.50
23	0.10	27	3.30	11	5.70
31	1.34	39	2.70	16	4.70
3	0.90	15	0.50	8	4.20
29	0.60	14	0.10	13	3.60
32	0.05	41	0.10	10	1.70
25	0.01	42	0.01	1	0.50

Original Article

The association of anti-r-HuEpo-associated pure red cell aplasia with HLA-DRB1*09-DQB1*0309



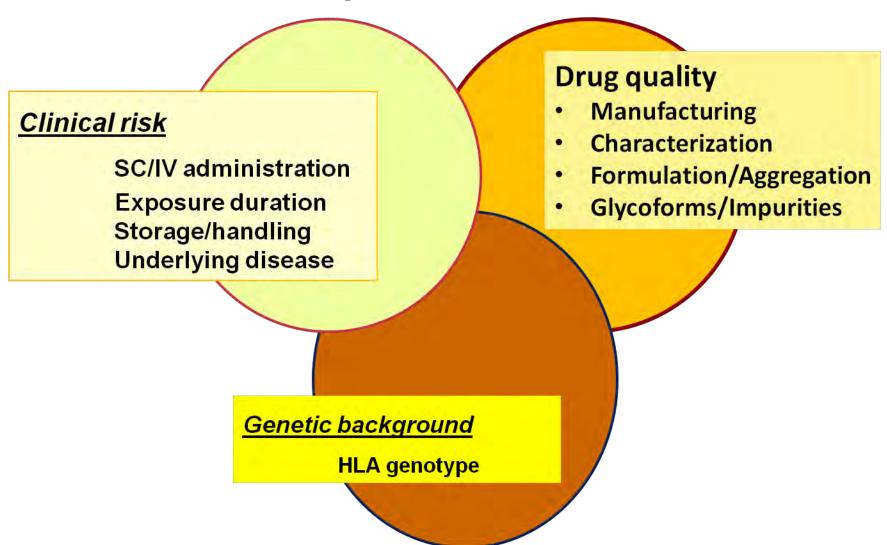

Table 4. Odds ratio for HLA alleles identified as potential associated HLA gene with anti-r-HuEpo-associated PRCA


	Anti-r-HuEpo-associated PRCA cases	Thai national stem cell donor	Odds ratio (95% CI)	P
HLA-DRB1*09	15 (34.1%)	354 (11.8%)	2.89 (1.88-4.46)	< 0.001

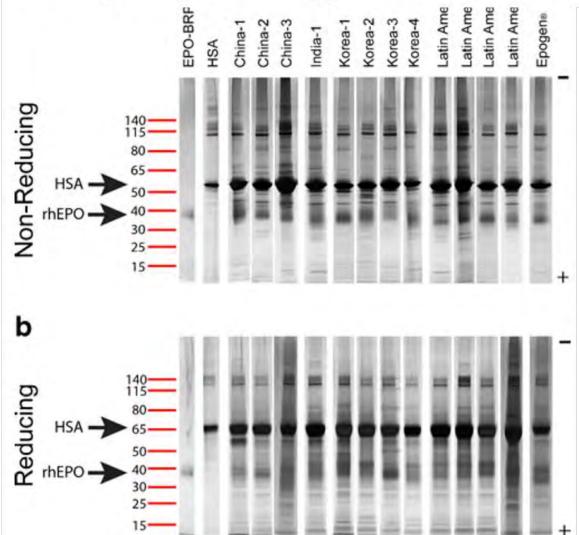
HLA gene frequency of anti-rHuEpo PRCA cases: N =75

CKD-ESRD receiving epoetin

HLA gene frequency (%)

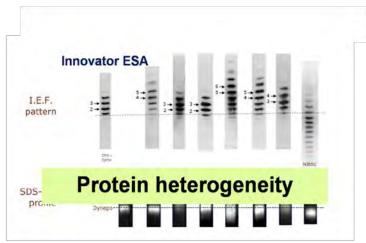

Demographic characteristics	Cases	Control	s	
n	24	81		
Age (years), mean (±SD)	59.5 (±18.6)	56.8 (±1	6.0)	
Sex, frequency (%)				
Male	17 (71)	48 (59)		
Female	7 (29)	33 (41)		
Race, frequency (%)				
Asian	1 (4)	4 (5)		
Black	0 (0)	2 (2)		
Other	0 (0)	1 (1)		
Caucasian	23 (96)	74 (91)		
Country, frequency (%)				
Canada	3 (13)	12 (15)		
France	8 (33)	9 (11)	A Ca	se-Control Study of the Association
Germany	1 (4)	O (O)		een Select HLA Genes and Anti-
UK	7 (29)	44 (54)		
Italy	1 (4)	3 (4)	_	ropoietin Antibody Positive Pure Re
Netherlands	0 (0)	4 (5)	Cell	Aplasia
Spain	2 (8)	O (O)		
Sweden	2 (8)	9 (11)		
Disease history, frequency (%)*				
Glomerulonephritis	7 (47)	19 (28)		
Diabetic nephropathy	1 (7)	14 (20)		
Renal vascular disease	6 (40)	8 (12)		
Interstitial nephritis	0 (0)	4 (6)		
Poly/multicystic kidney disease	2 (13)	4 (6)		
Obstructive/reflux nephropathy	0 (0)	4 (6)		
Congenital renal hypoplasia/dysplasia	0 (0)	4 (6)		
Renal neoplasms	0 (0)	1 (1)		
Renal failure metabolic disease	1 (7)	2 (3)		
Toxic nephropathy	0 (0)	1 (1)		
Paraproteinemia	0 (0)	1 (1)		
Other	1 (7)	16 (23)	Fiial B	Pharmacogenomics 2008;9:157-67
n	0 (0)	5 (7)	ya. D .	aaccgcaaccgca

Case-Control of HLA, PRCA Association


	Race	Freque	ncy (%)	OR	95% CI
		Cases	Controls		
٠	All matched subjects	-			
	N	24	81		
	DR B1*9/-	6 (25.0%)	2 (2.5%)	10.8	(2.2-53.7)
	Other/other	18 (75.0%)	79 (97.5%)	1.0	-
•	Asian				
	N	1	4		
	DR B1*9/-	1 (100.0%)	1 (25.0%)	NA	NA
	Other/other	0 (0.0%)	3 (75.0%)	NA	NA
•	Caucasian				
	N	23	74		
	DR B1*9/-	5 (21.7%)	1 (1.3%)	20.3	(2.2-184.5
	Other/other	18 (78.3%)	73 (98.7%)	1.0	-

Figal B et al. Pharmacogenomic 2008;9: 157-167

What are the risk factors/pathogenesis of anti-r-HuEpo associated PRCA?



How Bio-questionable are the Different Recombinant Human Erythropoietin Copy Products in Thailand?

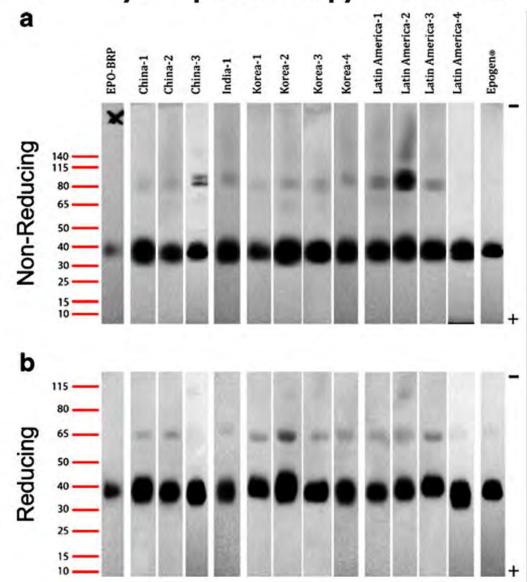
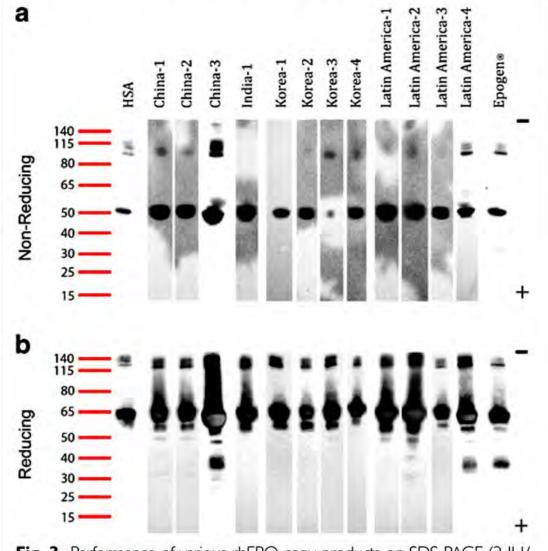

а

Fig. I SDS-PAGE gel of different rhEPO copy products (2 IU/lane) stained with SilverQuest™ Silver Staining under (a) non-reducing conditions and (b) reducing conditions. *Arrows* indicate the expected molecular weights of rhEPO or HSA.

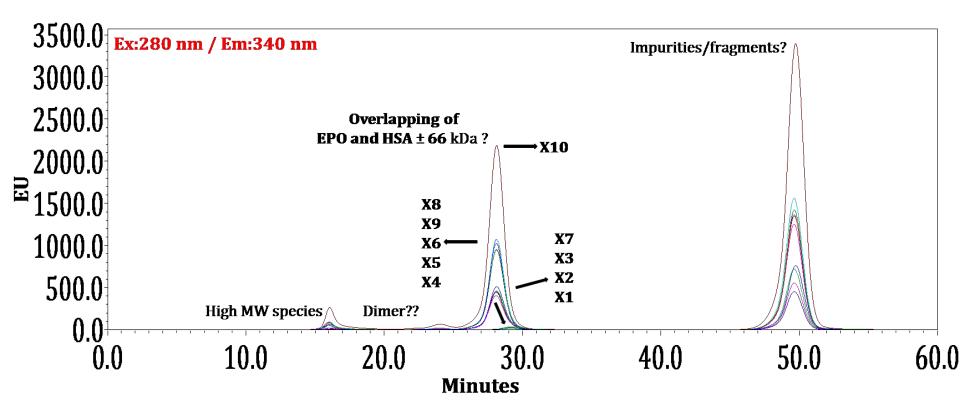

Pharm Res. 2014 May; 31(5):1210-8

How Bio-questionable are the Different Recombinant Human Erythropoietin Copy Products in Thailand?

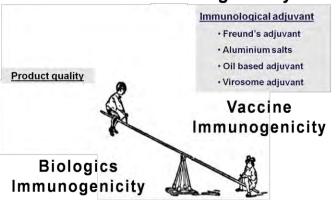
Fig. 2 Performance of various rhEPO copy products on SDS-PAGE (2 IU/lane) detected with Western blot using anti-EPO antibody under (**a**) non-reducing and (**b**) reducing condition.

How Bio-questionable are the Different Recombinant Human Erythropoietin Copy Products in Thailand?

Fig. 3 Performance of various rhEPO copy products on SDS-PAGE (2 IU/lane) detected with Western blot using anti-HSA antibody under (**a**) non-reducing and (**b**) reducing condition.


EPO and HSA present in all rhEPO products on Thai market

- Monomer
- Dimer
 - EPO / EPO + HSA / HAS + others
- High molecular weight species
 - Combined EPO and HSA or aggregates???
- Fragments

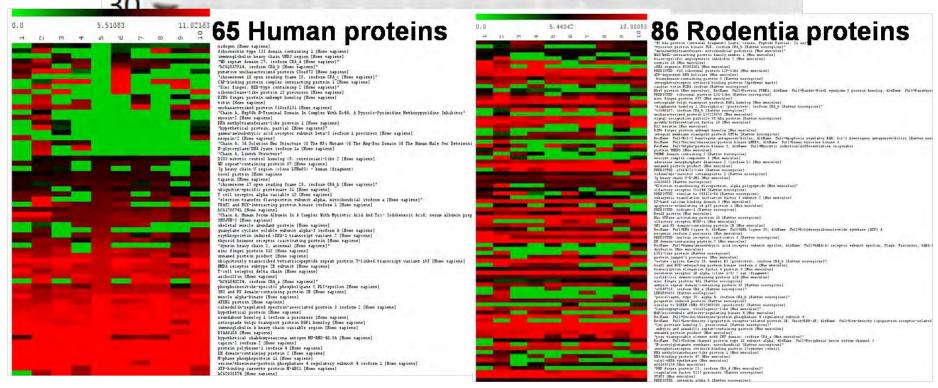

Pharm Res. 2014 May;31(5):1210-8

Chromatogram of EPO products

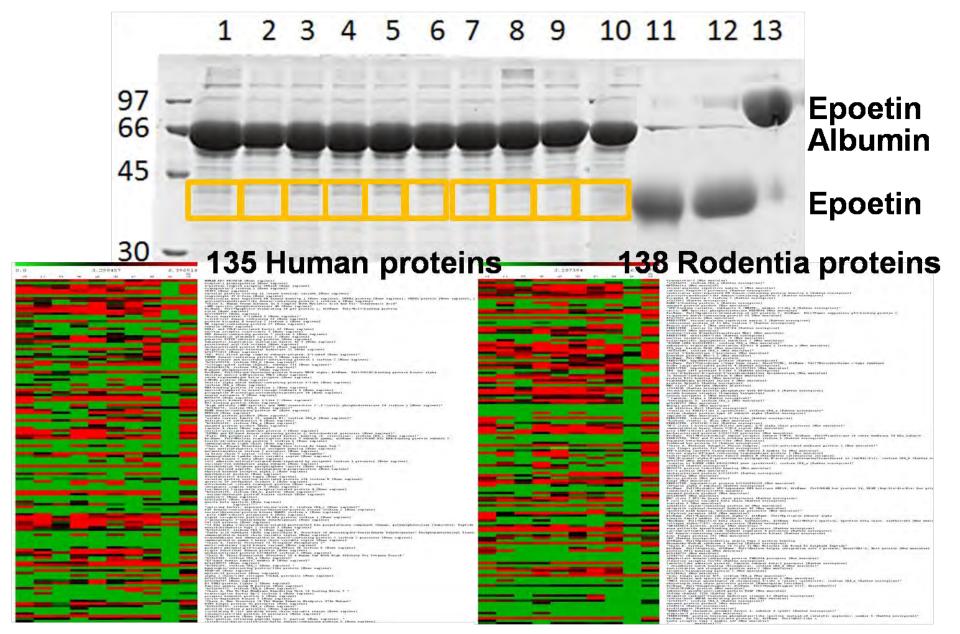
Loaded on the same IU

Balance of Immunogenicity

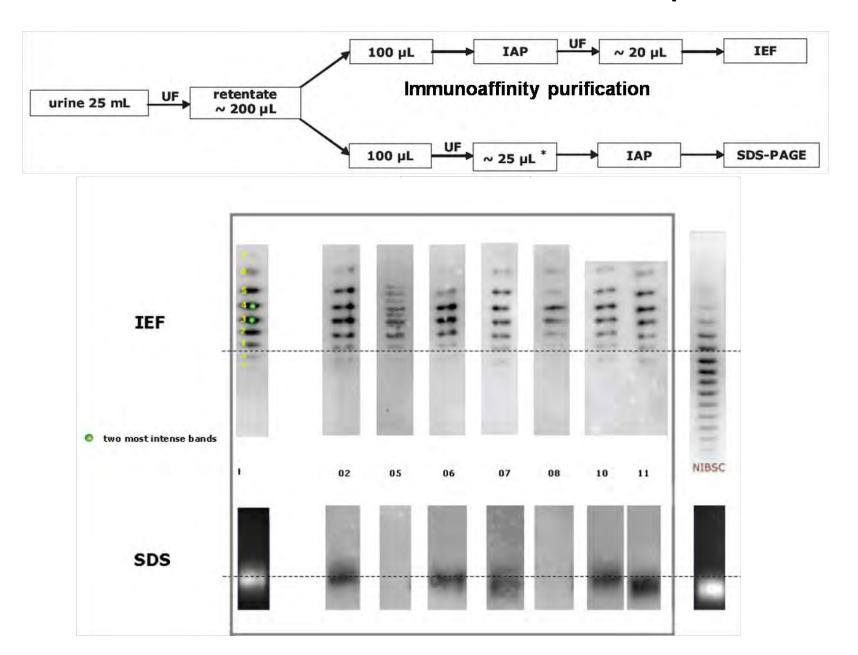
HSA

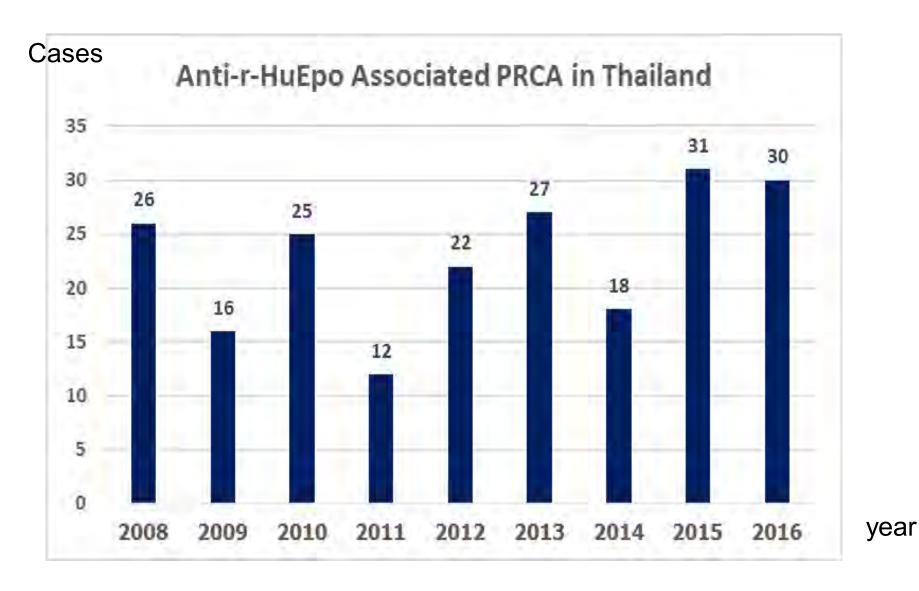

- HSA and EPO peak are "inseparable"
- The presence of dimer????
- Traces of impurities/fragments
- Presence of higher molecular weight species
 - EPO within aggregates?

Polysorbate + Glycine


- EPO peak is detected
- No dimer
- No traces of impurities/fragments
- Absence of higher molecular weight species

GeLC-MS analysis of impurities in Epoetin





GeLC-MS analysis of impurities in Epoetin

Urine Profiles of Individual Epo

Mean = 23 cases/year Total = 207 cases

Rechallenge with intravenous recombinant human erythropoietin can be successful following the treatment of anti-recombinant erythropoietin associated pure red cell aplasia

Kearkiat Praditpornsilpa¹, Khajohn Tiranathanakul¹, Saengsuree Jootar², Kriang Tungsanga¹, and Somchai Eiam-Ong¹

Table 1. Clinical and laboratory data of 5 patients re-challenged with intravenous r-HuEpo after the reversal of anti-r-HuEpo antibody.

Case	Age (years)	CKD stage	Duration of subcuta- neous r-HuEpo (month)	Dose of subcutane- ous r-HuEpo before PRCA	Hb during loss of efficacy (g/dL)	Duration of immuno- suppres- sion (month)	Anti-r- HuEpo titer	Interval between reversal of antibody and re-challenge (month)	Dose of intra- venous r-HuEpo after the antibody reversal	Anti-r-HuEpo at 6 th month after r-HuEpo re-challenge
1	55	IV	9	125 u/kg/ week	6.5	6	1:10,000	5	140 u/kg/ week	negative
2	49	٧	18	120 u/kg/ week	6.8	5	1:10,000	1	142 u/kg/ week	negative
3	53	٧	11	160 u/kg/ week	5.7	4	1:10,000	6	160 u/kg/ week	negative
4	48	IV	8	107 u/kg/ week	5.8	6	1:10,000	0	140 u/kg/ week	negative
5	39	٧	9	125 u/kg/ week	5.9	6	1:10,000	0	166 u/kg/ week	negative

Final Report

A Prospective, Immunogenicity Surveillance Registry of Erythropoiesis Stimulating Agent (ESA) with Subcutaneous Exposure in Thailand

Prepared by

Center of Excellence for Biomedical and Public Health Informatics
Faculty of Tropical Medicine
Mahidol University

A Prospective, Immunogenicity Surveillance Registry of Erythropoiesis Stimulating Agent (ESA) with Subcutaneous Exposure in Thailand

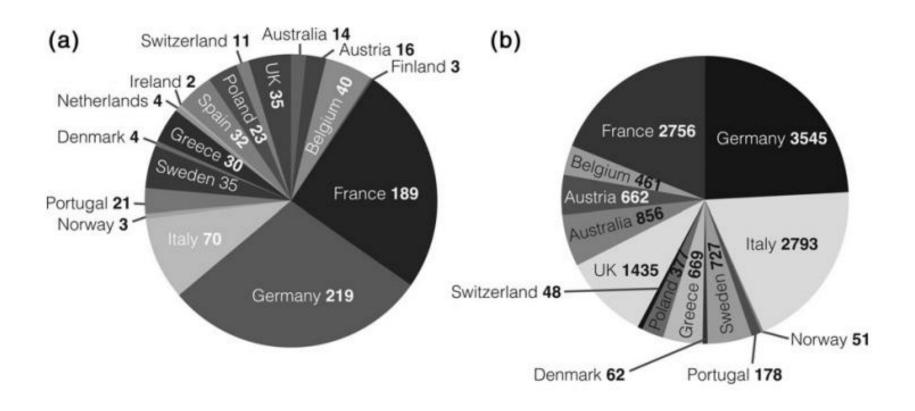
Table 1: Demographic data of the registry patients (n = 4018)

Characteristics

Male/Female	(%/%)	49.9/50.1
Age: Mean(S	D) (Year)	57.4 (15.3)
CKD Vintage	e: Mean (SD) (%)	18.6 (45.3)
History of kid	dney transplantation (%)	1.28
Clinical indic	cation of ESA (%)	
Rena	l anemia	99.8
Myel	odysplastic syndrome	0.2

A Prospective, Immunogenicity Surveillance Registry of Erythropoiesis Stimulating Agent (ESA) with Subcutaneous Exposure in Thailand

Table 1: Demographic data of the registry patients (n = 4018)


Stages of CKD (%)

CKD stage 1	0.1
CKD stage 2	0.1
CKD stage 3	2.6
CKD stage 4	13.1
CKD stage 5	84.3

Serum creatinine: Mean (SD) (mg/dL)
 9.02 (5.67)

• Estimated GFR: Mean (SD) (mL/min/1,73m²) 8.8 (7.9)

Incidence of erythropoietin antibody-mediated pure red cell aplasia: the Prospective Immunogenicity Surveillance Registry (PRIMS)

Nephrol Dial Transplant (2015) 30: 451–460

Case	Age at onset of LOE (years)/ gender	Race	Primary CKD cause	CKD stage	Product	ESA storage	Duration of exposure up to LOE
1	76/Male	White	Renovascular disease and hypertension	4	Aranesp®	Home	14 months
2	63/ Female	White	Renovascular disease and hypertension	5	NeoRecormon®	Home	6 months
3	92/Male	White	Unspecified	3	Eprex®	Home	11 months
4	66/Male	White	Unspecified	5	Eprex®	Home	21 months
5	85/Male	White- Indonesian	Polycystic kidney disease, renovascular disease and hypertension	4 enhrol	Eprex® Dial Transpl	Home	11 Months

- Access to Treatment
- National Financial Burden

- Patient's Safety
- Efficacy

- Efficient Regulator
- Appropriate Product's Quality Evaluation
- Effective National AE Report

Risk Management Plan